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Abstract
In this paper, we introduce a multi-agent multi-
armed bandit-based model for ad hoc teamwork
with expensive communication. The goal of the
team is to maximize the total reward gained from
pulling arms of a bandit over a number of epochs.
In each epoch, each agent decides whether to pull
an arm, or to broadcast the reward it obtained in
the previous epoch to the team and forgo pulling an
arm. These decisions must be made only on the ba-
sis of the agent’s private information and the public
information broadcast prior to that epoch. We first
benchmark the achievable utility by analyzing an
idealized version of this problem where a central
authority has complete knowledge of rewards ac-
quired from all arms in all epochs and uses a mul-
tiplicative weights update algorithm for allocating
arms to agents. We then introduce an algorithm
for the decentralized setting that uses a value-of-
information based communication strategy and an
exploration-exploitation strategy based on the cen-
tralized algorithm, and show experimentally that it
converges rapidly to the performance of the central-
ized method.

1 Introduction
The past decade has seen an increased use of robotic and soft-
ware agents; more companies and labs are creating their own
agents that have different operating strategies and, in many
cases, may need to work together as a team in order to achieve
certain objectives. This world of increasing interdependence
has motivated the research area of ad hoc teamwork [Stone
and Kraus, 2010]: a setting in which agents need to cooper-
ate without any pre-coordination and work toward a common
goal [Stone et al., 2010]. Standard approaches to teamwork,
e.g. SharedPlans [Grosz and Kraus, 1996], STEAM [Tambe,
1997], or GPGP [Decker and Lesser, 1995], rely on common
agreements about strategies and communication standards, or
other shared assumptions. However, in ad hoc teamwork,
teammates should be able to leverage each others’ knowledge
without explicitly relying on the strategy used to generate that
knowledge, or assumptions about how others will operate in
the future. This is a grand challenge for the state of the art

in multi-agent systems, but the multi-armed bandit (MAB)
domain has emerged in the last few years as the standard ap-
proach to start thinking about it [Barrett et al., 2014].

In a multi-agent multi-armed bandit problem, a team of
agents (e.g. a swarm of nanorobots performing a complex
set of tasks or of drones patrolling a large area, etc.) is play-
ing a MAB. The question that makes this problem interest-
ing beyond the intrinsic exploration / exploitation tradeoff
feature of the single-agent version is the role of information
sharing. Although various solutions to classical MAB prob-
lems are well known [Gittins and Jones, 1979; Gittins, 1979;
Auer et al., 2002a; Auer et al., 1995; Lai and Robbins, 1985]
and the agents may individually play such a solution to con-
verge on a good strategy, it is intuitively clear that by sharing
information, e.g. about their observed payoffs in past rounds,
they can approach a good strategy much faster. But, in gen-
eral, information sharing comes at a cost that can take many
forms: for example, a fixed penalty term or fractional reduc-
tion applied to the immediate reward gathered from a pull, or
the preclusion of pulling an arm while while an agent trans-
mits a message to its teammates. In this paper, we devise and
evaluate a solution scheme for the last scenario in the above
list: if an agent communicates, it cannot simultaneously ac-
cess the bandit, thus incurring an opportunity cost. However,
the scheme generalizes to other definitions of cost.

We first define a new multi-agent MAB model, in order
to capture the three-way tradeoff between exploration, ex-
ploitation, and communication. We benchmark the perfor-
mance that can be achieved in a centralized version of this
problem (with Gaussian rewards) in which a controller with
knowledge of each agent’s choices and rewards can decide
which agents to allocate to pulling which arm without suf-
fering any communication cost. Intuitively, one would ex-
pect that under such circumstances, it should be possible to
achieve a total reward that is close to what is attainable in the
full-information experts learning or forecasting variant of the
problem [Vovk, 1990; Foster, 1991; Foster and Vohra, 1993;
Littlestone and Warmuth, 1994]. We establish that a multi-
agent strategy with a centralized coordinator (with costless
communication), which we call the public agent, can indeed
obtain performance similar to these single-agent solutions
that use full information. Our method is based on multiplica-
tive weight updates, and we prove a regret bound for this strat-
egy using a technique due to Freund and Schapire [1999].



The problem that we actually want to solve involves a de-
centralized (albeit cooperative) multi-agent system; but the
insights we gain from the analysis of the idealized version
with a central controller turn out to be useful in designing ef-
fective protocols for how these agents communicate and uti-
lize publicly available information. We let the team maintain
a shared base of all historically broadcast information that
acts as a proxy for the public agent in the following sense:
Whenever an agent decides which arm to pull, it does so
based on a combination of its private information with that
in this shared base; whenever an agent decides whether or not
to broadcast and hence has to reason about the long-term im-
pact of its immediate future action on the performance of the
team, it approximates the team’s future behavior by that of an
imaginary controller having access to the shared information
base and allocating arms as in the centralized version.

More precisely, the exploration-exploitation strategy in
our decentralized algorithm is a variant of the softmax ap-
proach, which is known to perform well empirically for the
single-agent problem [Vermorel and Mohri, 2005]: The agent
chooses an arm according to a distribution of probabilities
proportional to the exponentials of the empirical rewards ob-
tained from the arms, weighted appropriately. In our multi-
agent extension, each agent chooses an arm using a similar
weight distribution whose parameters are informed by the al-
gorithm we developed for the central benchmark. To summa-
rize our procedure for deciding when to broadcast, which we
call the “Value of Information” (VoI) communication strat-
egy, an agent optimistically estimates the total reward that
could possibly result from broadcasting its latest observation,
which is then compared to the estimated reward from pulling
an arm. If the latter is higher, then the agent naturally abstains
from broadcasting in the next round; otherwise, it communi-
cates with a probability chosen so that in expectation approx-
imately one of the agents that pulled that arm is communicat-
ing in a given round (specifically, a probability inversely pro-
portional to the expected number of agents in the population
that pulled the arm, given the current empirical estimates).
Finally, we show experimentally that our decentralized algo-
rithm for the multi-agent MAB achieves performance close to
that of the centralized algorithm, thus efficiently solving the
exploration / exploitation / communication “trilemma”.

2 Related Work
Stone and Kraus [2010] were the first to use a MAB model
for ad hoc teamwork (a simple two-agent cooperative set-
ting), but Barrett et al. [2014] used a multi-agent MAB (in
particular, a two-armed bandit with Bernoulli payoff distri-
butions) to formalize ad hoc teamwork with costly commu-
nication for the first time: They focused on designing a sin-
gle ad hoc agent that can learn optimal strategies when play-
ing with teammates who have specified strategies, in a set-
ting where each round consists of a communication phase
(broadcasting a message with an associated cost function),
and an action phase (pulling an arm to extract a reward).
More recent work has focused on designing adaptive ad hoc
agents that can observe (previously unseen) teammates dur-
ing operation but cannot exchange messages with them (e.g.

[Albrecht and Ramamoorthy, 2013; Barrett and Stone, 2015;
Hernandez-Leal et al., 2016] and references therein). We, on
the other hand, construct a common communication proto-
col for every agent in a decentralized team where information
sharing is feasible but optional and, if executed, precludes
action. This also differentiates our contribution from the dis-
tributed stochastic bandit algorithm [Szörényi et al., 2013]
for a P2P network where each pull of an arm is necessarily
followed by message passing between peers.

Some previous work has modeled communication cost in
a collaborative multi-agent system as an extraneous quantity,
equal or proportional to the number “of messages sent in the
system”, that is traded off against regret (in the reward col-
lected from the bandit), in both (distributed) experts [Kanade
et al., 2012] and MAB [Hillel et al., 2013; Buccapatnam
et al., 2015] settings; in our model, information sharing in-
terferes more intimately with reward collection. Distributed
multi-agent MABs have also been employed to model cogni-
tive radio networks [Liu and Zhao, 2010; Kalathil et al., 2012;
Tossou and Dimitrakakis, 2015] where collisions (multiple
agents pulling the same arm in the same round) are costly. In
our model, multiple agents pulling the same arm all receive
the same reward for that round. A fundamentally different
application of the MAB model to multi-agent systems is the
use of MAB policies by agents to select other agents for spe-
cific services within a service sharing system [Vallée et al.,
2014]. Both theoretical and experimental studies of social
learning or imitation in the social and cognitive sciences have
involved multi-agent MAB models, where agents access and
utilize one another’s historical information [Schlag, 1998;
Biele et al., 2009; Rendell et al., 2010]. The main difference
with our model is that their agents are selfishly motivated
whereas ours work towards the shared goal of maximizing
the collective reward. Moreover, in these models, no cost is
incurred by an agent for transmitting information but may be
sustained in acquiring it; e.g., if an agent is receiving (per-
haps noisy) information about another’s action and reward, it
cannot pull an arm in that epoch.

3 Formal Problem Description
Our model follows the basic definitions of a classical ban-
dit problem: We have a set of n arms such that, in any
epoch t over a pre-specified time-horizon of length T , arm
i generates a random reward ri,t independently (across arms
and epochs) from a time-invariant Gaussian distribution:
ri,t ∼ N (µi, σ

2) ∀i, t. We assume that all arms have the
same known standard deviation σ > 0 but unknown means
{µi}ni=1, where µi 6= µj for at least one pair (i, j), and that
the maximum and minimum possible values, µmax > µmin >
0, of these mean rewards are also known a priori.

There arem > n agents in our team: In epoch t, each agent
j must decide without any knowledge of the others’ simulta-
neous decisions whether to broadcast a message consisting of
the index of the arm it pulled and the reward it thus gained in
epoch (t − 1). If an agent chooses to broadcast at t, then it
loses the chance to pull any arm and hence collect any reward
during t – this can be viewed as the cost of communication –
but its message becomes available to the entire team for use



in decision-making from epoch (t + 1) onwards. However
if an agent decides not to broadcast at t, it pulls an arm and
gets a reward. If multiple agents pull the same arm i in epoch
t, each receives the same reward ri,t; the fact that an arm
generates the same reward regardless of how many times it is
pulled in an epoch removes any learning benefit from an arm
being pulled by more than one agent at any t.

Thus, if mi,t agents pull arm i in epoch t, then∑n
i=1mi,t ≤ m in general, and the total reward amassed

by the team in this epoch is
∑n
i=1mi,tri,t. Every agent’s

goal is to maximize the team’s cumulative total reward over
T epochs, i.e.

∑T
t=1

∑n
i=1mi,tri,t. This is why broadcasting

can be beneficial in the long run: By sacrificing immediate
gain, an agent enriches the shared pool of knowledge about
the unknown parameters, leading to savings in exploration
time for the team as a whole. However, each agent now has
to resolve a two-stage dilemma: [Stage 1 (Communication vs
Reward Collection)] Should it broadcast its observation from
the previous epoch? [Stage 2 (Exploration vs Exploitation)]
If it decides not to broadcast, which arm should it pull now?

Before presenting our strategy for handling the above is-
sues in Section 5, we describe in Section 4 an idealized ver-
sion of our problem in which a central authority that we
call the public agent always has complete knowledge of re-
wards generated by all arms, and uses that to allocate arms to
agents that do not make individual decisions. We then pro-
pose and analyze a multiplicative weights update algorithm
to solve this exploration-exploitation problem with instanta-
neous costless communication. This framework serves a dual
purpose: It offers insights that we utilize in the design of our
solution scheme for the decentralized problem, and also pro-
vides a gold standard for evaluating that scheme.

4 Ideal Centralized Multi-Agent MAB
The public agent maintains a normalized weight (in other
words, probability) distribution across the n arms, denoted by
Pt = (P1,t, P2,t, · · · , Pn,t) where Pi,t ≥ 0 ∀i, ∑n

i=1 Pi,t =
1, and assigns mPi,t agents to arm i in epoch t.1 The
starting distribution is uniform: Pi,1 = 1/n ∀i. During t,
the public agent observes the sample reward ri,t generated
by each arm i, and hence updates the weight distribution
to Pt+1 at the beginning of the next epoch using the fol-
lowing multiplicative weights update (MWU) approach [Lit-
tlestone and Warmuth, 1994; Freund and Schapire, 1997;
Freund and Schapire, 1999]:

Pi,t+1 = Pi,tβ
−
ri,t+λ

κ /Zt, (1)

where β ∈ (0, 1), λ ∈ R, κ > 0, Zt =
∑n
ι=1 Pι,tβ

− rι,t+λκ .
Ideally, the public agent would like to maximize the cu-

mulative reward of the team over a given time-horizon T , i.e.∑T
t=1

∑n
i=1 ri,tmPi,t, or equivalently the time-averaged per-

agent cumulative reward 1
T

∑T
t=1 ri,tPi,t. We define the re-

1In an actual implementation, if mPi,t is fractional, then
bmPi,tc agents are initially assigned to arm i, and then all the re-
maining (m−

∑n
i=1bmPi,tc) are optimistically allocated to the arm

with the current highest empirical mean.

gret of the centralized strategy with updates (1) as

Rcentral(T ) = max
P

[
1

T

T∑

t=1

n∑

i=1

ri,tPi

]
− 1

T

T∑

t=1

n∑

i=1

ri,tPi,t,

where P = (P1, P2, · · · , Pn) is a probability distribution.
Theorem 1 shows that the regret of this centralized MWU
method becomes vanishingly small for a large enough T .
Theorem 1 Suppose, a bandit has n arms producing Gaus-
sian rewards with the same known standard deviation σ,
and unknown means {µi}ni=1 with a known range Rµ ,
µmax − µmin > 0. For any horizon T ∈ Z+ and an arbi-
trarily small number δ, 0 < δ < min{2nTΦ(Rµ/2σ), 1},
if we use a centralized MWU strategy with a uniform initial
weight distribution and the update rule (1) with parameters

β = 1/
(

1 +
√

2 ln(n)
T

)
, λ = σΦ−1(δ/(2nT ))− µmax,

κ = Rµ − 2σΦ−1(δ/(2nT )),

where Φ(·) denotes the standard normal cumulative distribu-
tion function, then with probability at least (1− δ),

Rcentral(T ) = O
(

(Rµ + σ)

√
ln(nTδ ) ln(n)

T

)
.

We outline the proof of the theorem below, and defer the com-
plete proof to a full version of the paper. But first, we note
that the above MWU algorithm is equivalent to a decreasing
SOFTMAX strategy [Vermorel and Mohri, 2005] over empir-
ical means µ̂i,t =

∑t
s=1 ri,s/t with temperature τt = τ0/t,

τ0 = [Rµ − 2σΦ−1(δ/(2nT ))]/ ln(1 +
√

2 ln(n)/T ). (2)

Thus, we can rewrite the weight distribution in (1) as

Pt = SOFTMAX({µ̂i,t}ni=1, τt).

Proof sketch. We rewrite the multiplicative factor in (1) as
βL̂i,t where we define L̂i,t , (−ri,t−λ)/κ as the normalized
loss. We now recall the amortized analysis that Freund and
Schapire [1999] used to prove that their MWU algorithm for
repeated game playing is no-regret when the player’s loss for
any action lies in [0, 1], and adapt it to the case of Gaussian
losses. We have chosen the shifting and rescaling parameters
λ and κ so that the following inequality holds:

Pr(βL̂i,t ≤ 1− (1− β)L̂i,t) ≥ 1− δ/(nT ) ∀i, t. (3)

Our potential function is RE(P̃||Pt), the Kullback-Leibler
divergence of the current probability distribution Pt from an
arbitrary fixed distribution P̃; we further define ∆R̃Et,t′ ,

RE(P̃||Pt′)−RE(P̃||Pt). It is easy to see that ∆R̃E1,T+1 ≥
− ln(n) since P1 is a uniform distribution; combining the
analysis of Freund and Schapire [1999] with a union bound
of probabilities (over arms and epochs) applied to (3),
we can further deduce a high-probability upper bound on
∆R̃E1,T+1 =

∑T
t=1 ∆R̃Et,t+1. Using these upper and lower

bounds, we can establish that, with probability at least (1−δ),
1
T

∑T
t=1

∑n
i=1 ri,tP̃i − 1

T

∑T
t=1

∑n
i=1 ri,tPi,t ≤ ∆, where



∆ , κ
(√

2 ln(n)/T + ln(n)/T
)

. Finally, using the Gaus-

sian tail inequality Φ(−a) ≤ 0.5e−a
2/2 for any a > 0, we can

show that κ ≤ Rµ+2σ
√

2 ln(nTδ ), and hence, after some al-

gebra, that ∆ < 2
√

2
(√

2 + 1
)

(Rµ + σ)
√

ln(nTδ ) ln(n)
T for

T ≥ max(2, ln(n)). This completes the proof. �

5 Decentralized MAB With
Value-of-Information Communication
Strategy

The decentralized problem takes away the coordinator, in-
troducing communication as a costly option; we design a
scheme for how each agent decides whether to broadcast or
pull an arm such that the team’s overall behavior mimics that
of the centralized version (Section 4) as closely as possible.
To this end, we employ a device which we will call the public
agent for a decentralized MAB but which is, in fact, an iden-
tical representation held by each agent of all the information
publicly communicated until the current epoch: a shared table
containing two entries for each arm i, νcumi,t = |T cumi,t |, where
T cumi,t is the set of epochs at each of which information on arm
i was broadcast by at least one agent until (but excluding)
epoch t, and the cumulative reward rcumi,t =

∑
t∈T cumi,t

ri,t.
The public agent’s empirical mean for arm i during epoch t
is µ̂public

i,t = rcumi,t /νcumi,t . For any agent j, any epoch is either
an action round, when it pulls an arm, or a broadcast round,
when it sends a message to the team, the starting epoch being
necessarily an action round for every agent. Agent j has a
private table with four entries for each arm i: νai,j,t = |T ai,j,t|,
rai,j,t =

∑
t∈Tai,j,t

ri,t, νbi,j,t = |T bi,j,t|, rbi,j,t =
∑
t∈T bi,j,t

ri,t

where T ai,j,t is the set of epochs in which agent j has pulled
arm i, and T bi,j,t ⊂ T ai,j,t is the subset of these pulls that it has
communicated until (but excluding) epoch t.

Exploration-exploitation with softmax strategy. If epoch
t is an action round for agent j, then at the beginning of this
epoch, this agent combines its private table with the public
agent’s information set to produce its own vector of empirical
means across arms {µ̂i,j,t}ni=1: µ̂i,j,t = r̂i,j,t/ν̂i,j,t where
r̂i,j,t = rai,j,t−rbi,j,t+rcumi,t and ν̂i,j,t = νai,j,t−νbi,j,t+νcumi,t .2
It then applies a softmax function to these means with the
decreasing temperature parameter τt = τ0/t, τ0 defined in
(2) in Section 4, to generate a probability distribution over
arms, and draws an arm according to this distribution, say
i∗ = ij,t. The reward r∗ = ri∗,t thus collected is added
to the team’s cumulative reward; agent j updates its private
table entries: rai∗,j,t+1 = rai∗,j,t + r∗, νai∗,j,t+1 = νai∗,j,t + 1;
rai,j,t+1 = rai,j,t, ν

a
i,j,t+1 = νai,j,t ∀i 6= i∗.

Value-of-Information (VoI) communication criterion.
At the end of each action round, say epoch t, agent j follows
a three-step (in general) procedure, depicted as flow-chart in

2Each agent’s private table is so initialized that the initial empir-
ical mean for each arm is (µmin + µmax)/2.

Figure 1, to decide whether or not broadcast information on
the arm i∗ it just pulled in the next epoch (t+ 1).

First, it checks if the reward r∗ from this pull is greater than
the public agent’s empirical mean µ̂public

i∗,t ; if yes (resp. no),
then it uses an upper (resp. a lower) confidence bound on the
mean reward of the arm i∗ under consideration and a lower
(resp. an upper) bound on that of every other arm to gener-
ate a vector of working estimates {µ̃i,j,t}ni=1 across arms for
further comparison purposes: An upper (resp. lower) bound
is obtained by adding to (resp. subtracting from) the updated

empirical mean µ̂i,j,t+1 the quantity σ
√

2 ln( nT
2εvoi

)/ν̂i,j,t+1,
where εvoi ∈ (0, 1) is a free (error) parameter.

In the second step, agent j uses the public agent as a proxy
for the team’s collective behavior to compare the team’s esti-
mated expected cumulative reward over the remainder of the
horizon in two mutually exclusive and exhaustive scenarios:
one in which epoch (t + 1) is an action round, say Λaj,t, and
the other in which it is a broadcast round, say Λbj,t. For com-
puting Λaj,t, agent j acts as if the public agent will receive
no further communication, and will allocate arms to agents
in all epochs starting at (t + 1) using the weight distribution
wa
t = {wai,t}ni=1, where the temperature τt comes from (2):

wa
t = SOFTMAX({µ̂public

i,t }ni=1, τt). (4)

For evaluating Λbj,t, agent j assumes that the public agent
uses the weight distribution wa

t to allocate arms to the re-
maining (m − 1) agents during epoch (t + 1), after which it
will augment its information set with only agent j’s broad-
cast message (i∗, r∗) to update its weight distribution to
wb
t+1 = {wbi,t+1}ni=1, and use this distribution henceforth.

µ̂bi∗,t+1 =
rcumi∗,t +r

∗

νcum
i∗,t +1 , µ̂bi,t+1 = µ̂public

i,t ∀i 6= i∗;

wb
t+1 = SOFTMAX({µ̂bi,t+1}ni=1, τt). (5)

The algebraic expressions for Λaj,t and Λbj,t are provided in
Figure 1. Notice that the computation of Λbj,t is the only time
in our scheme when the exact nature of the communication
cost comes into play. For other cost types mentioned in our
introduction, we will just have (an) additional term(s) to ac-
count for it in the above summation; the rest of the scheme
remains the same as delineated in this paper.

Let us define the agent’s current Value of Information
VoI , Λbj,t − Λaj,t, which estimates the long-term benefit ac-
crued by the team if the agent under consideration forgoes im-
mediate reward collection to share its latest information. The
idea of using the value of information for decision making
implicitly goes back a long way; the explicit modern formu-
lation goes back at least to Howard [1966]. Recently, it has
been used in related AI contexts by Chajewska et al. [2000]
and Boutilier [2002], among others.

Agent j decides to not broadcast in epoch (t + 1) if
VoI ≤ 0; if VoI > 0, it uses what we will call the simple
communication criterion in the final step of its decision-
making procedure: It estimates the number of agents m̂i∗

that have pulled the arm i∗ in epoch t as the product of m and
the public agent’s current weight wai∗,t on the arm; if m̂i∗ is
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Figure 1: Flow-chart showing the steps of the VoI and simple communication strategies for an arbitrary agent j at the end of an action round,
as described in Section 5. µ̂public

i,t and µ̂i,j,t+1 denote the public agent and agent j’s empirical mean reward values for arm i after agent j has
pulled an arm in epoch t; {wa

i,t}ni=1 and {wa
i,t+1b}ni=1 are defined in (4) and (5) respectively.

one or less, agent j decides to broadcast deterministically at
(t+ 1), otherwise it broadcasts at (t+ 1) on the success of a
Bernoulli trial with success probability 1/bm̂i∗c. The idea is
to keep the expected number of broadcasts per arm per epoch
at 1 since excess simultaneous broadcasts corresponding to
the same arm convey redundant information and only impede
reward collection. If (and only if) agent j decides that epoch
(t + 1) is a broadcast round, the entries rbi∗,j,t and νbi∗,j,t in
its private table are incremented by r∗ and 1 respectively.

Message broadcasting. If epoch t is a broadcast round for
agent j, it publicly sends out the message (i∗, r∗) where i∗ =
ij,t−1 and r∗ = ri∗,t−1, pulls no arm at t but sets epoch (t+
1) as an action round; before epoch (t + 1) commences, the
public agent is augmented with messages transmitted by all
broadcasting team members in epoch t, discarding duplicates.

6 Experimental Evaluation
In this section, we describe two sets of experiments we ran
to compare the performance of the decentralized multi-agent
MAB exploration-exploitation algorithm with VoI communi-
cation strategy that we proposed in Section 5 with several
benchmarks described below. In these two sets, we studied
the variation of the regret of each algorithm over the number
of arms and over different lengths of the time-horizon (keep-
ing the other variable fixed) respectively – we report the cor-
responding results in Figures 2 (a) and (b).

Our main benchmark for both sets is the centralized soft-
max / MWU strategy, detailed in Section 4, which gives us a
lower bound on the regret achievable by any decentralized
scheme. Additionally, for the first set of experiments, we
used two other benchmarks – agents exploring-and-exploiting
the bandit arms independently (i.e. with no communica-
tion) all using one of two standard approaches – EXP3 [Auer
et al., 2002b] and UCB1-Normal [Auer et al., 2002a] – to
demonstrate that regret can be lowered drastically by allow-
ing agents to engage in broadcasting, even if the latter is ex-
pensive. Finally, for both sets, we also ran experiments where
agents made their broadcasting decisions using only the sim-
ple communication criterion described in Section 5 and de-
marcated in Figure 1 (skipping the first two stages of VoI) in
order to show the improvement, if any, that can be achieved
by incorporating the value of information (i.e. the difference
Λbj,t − Λaj,t) in one’s decision-making process.

For each experiment, the number of agents is set at m =
25n, n being the number of arms The means of the Gaus-
sian reward distributions on the bandit arms form a decreasing
arithmetic sequence starting at µmax = µ1 = 1 and ending
at µmin = µn = 0.05, so that the magnitude of the common
difference is Θ( 1

n ); the shared standard deviation σ = 0.1 is
independent of the number of arms.

The per-agent time-averaged regret, plotted on the verti-
cal axis, is defined as the difference between the total reward
accumulated by the team over the time-horizon, divided by
the number of agents and the number of epochs in the hori-
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Figure 2: Error bars, being small, are omitted. (a) Regret vs. number of arms for fixed “intermediate” time-horizon T = 500: UCB1-Normal
is still in its initial exploration phase (see Auer et al. [2002a] for details). Both communication strategies offer significant improvements over
independent reward-collection schemes, VoI outperforming simple for a lower number of arms. (b) Regret vs. length of horizon for fixed
number of arms n = 40, both axes using logarithmic scales. VoI is slightly worse than simple for smaller T ∼ 102 presumably because the
former results in relatively fewer broadcasts preventing agents from utilizing others’ information over short horizons; however, it overtakes
simple for longer horizons, performing on a par with the centralized strategy for a large enough T (∼ 104 and higher).

zon, and µ1 = 1 (this regret concept is stronger than that in
Section 4). Each data-point is generated by averaging the re-
gret values over Nsim = 105 repetitions. We set δ = 0.01,
εvoi = 0.05

Nsim
to ensure that our confidence bounds hold for

all experiments. Figure 2 provides strong empirical evidence
that, for a range of values of n and T , the VoI strategy enables
a decentralized team with a sufficient number of members to
achieve performance close to that with a central controller.

7 Conclusion
We formulated a novel model for the problem of reward col-
lection by a team from multiple (stochastic) sources with
costly communication, by extending the classic multi-armed
bandit model to a multi-agent setting. We introduced an algo-
rithm (decentralized softmax with VoI communication strat-
egy) for achieving an exploration / exploitation / communica-
tion trade-off in this model. To benchmark the performance
of this algorithm, we designed a centralized algorithm and
proved its no-regret property. Finally, we demonstrated em-
pirically that the performance of our decentralized algorithm,
measured in terms of regret, approaches that of the central-
ized method. Directions of future work include evaluating
our strategy under other communication cost structures, con-
sidering information acquisition costs (see, e.g., Rendell et al.
[2010]), and analytically deriving the rate of convergence of
our decentralized approach to the centralized benchmark.
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[Szörényi et al., 2013] Balázs Szörényi, Róbert Busa-
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